Our Publications Database

Article 57

Cost-effective optimized method to process 3D tumoral spheroids in microwell arrays for immunohistochemistry analysis

Matei Mircea Bogdan, Marinescu Carmen Letitia, Matei Christien Oktaviani, Pînzariu Alex-Sebastian, Zăgrean Leon, Moisescu Mihaela Georgeta 

Journal: JOURNAL OF MEDICINE AND LIFE

Year: Mai 2024

DOI: 25122/jml-2024-0267

 

3D spheroid culture; microwell array; immunohistochemistry; pathology; glioblastoma; breast adenocarcinoma

This study presents an improved method for obtaining spheroids microwell arrays for histological processing and analysis, focusing on glioblastoma (U87 MG) and breast adenocarcinoma (MCF-7) tumor models. By transitioning from traditional 2D cell cultures to 3D systems, this approach overcomes the limitations of 2D cultures by more accurately replicating the tumor microenvironment. The method consists of producing homotypic and heterotypic spheroids using low-adherence agarose-coated wells, embedding these spheroids in agarose microwell arrays, and conducting immunohistochemistry (IHC) to analyze cellular and molecular profiles. Morphological analyses were performed using OrganoSeg software, and IHC staining confirmed marker expressions consistent with respective tumor types. The study details the workflow from 2D cell culture to IHC analysis, including agarose well coating, spheroid embedding, and IHC staining for markers such as EMA, p53, Ki-67, ER, PR, and HER2. Results demonstrated compact, round U87 MG spheroids and fibroblast-stabilized MCF-7 spheroids, with both types exhibiting specific marker expressions. This innovative approach significantly enhances the efficiency of producing and analyzing large volumes of spheroids, making it both quick and cost-effective. It offers a robust drug screening and cancer research platform, maintaining spheroid traceability even in bulk workflow conditions. Furthermore, this methodology supports advances in personalized medicine by providing a more physiologically relevant model than 2D cultures, which is crucial for investigating tumor behavior and therapeutic responses through IHC.

Article 44

Effects of Ibrutinib on biophysical parameters of platelet in patients with chronic lymphocytic leukaemia

Popov, Viola Maria; Matei, Christien Oktaviani; Omer, Meilin; Onisai, Minodora; Matei, Mircea Bogdan; Savopol, Tudor; Bumbea,Horia; Moisescu, Mihaela G.

Journal: American Journal of Blood Research

Year: 2020

Ibrutinib; leukemia; platelets; membrane potential; ROS

Patients with chronic lymphocytic leukemia (CLL) treated with Ibrutinib often present hemorrhagic complications. Platelets dysfunction is well documented by aggregometry and flow cytometry, but the mechanisms by which Ibrutinib treatment influences the platelets status is yet to be evaluated. The aim of this study is to identify platelet membrane parameters in chronic lymphocytic leukemia (CLL) that could be altered by Ibrutinib administration. In this paper we propose a set of fluorescence measurements of the following parameters: membrane fluidity, resting membrane potential, and reactive oxygen species production of platelets suspensions obtained from CLL patients treated or not with Ibrutinib as markers for platelets status in this pathological situation. Platelets from CLL patients treated with Ibrutinib have higher membrane fluidity, lower resting membrane potential and higher level of reactive oxygen species production compared to the untreated CLL patients. These patients are also presenting higher membrane fluidity and lower resting membrane potential compared to healthy volunteers.

 

Article 41

Concentrations of Lead, Mercury, Arsenic, Cadmium, Manganese, and Aluminum in Blood of Romanian Children Suspected of Having Autism Spectrum Disorder

Manouchehr Hessabi, Mohammad H Rahbar, Iuliana Dobrescu, MacKinsey A Bach, Liana Kobylinska, Jan Bressler, Megan L Grove, Katherine A Loveland, Ilinca Mihailescu, Maria Cristina Nedelcu, Mihaela Georgeta Moisescu, Bogdan Mircea Matei, Christien Oktaviani Matei, Florina Rad 

Journal: International journal of environmental research and public health

Year: 2019

Romania; Aluminum; Arsenic; Autism Spectrum disorder; Cadmium; Lead; Manganese; Mercury.

Environmental exposure to lead (Pb), mercury (Hg), arsenic (As), cadmium (Cd), manganese (Mn), and aluminum (Al) has been associated with neurodevelopmental disorders including autism spectrum disorder (ASD). We conducted a pilot study during May 2015-May 2107 to estimate blood concentrations of six metals (Pb, Hg, As, Cd, Mn, and Al) and identify their associated factors for children with ASD or suspected of having ASD in Romania. Sixty children, age 2-8 years, were administered versions of ADOS or ADI-R translated from English to Romanian. After assessment, 2-3 mL of blood was obtained and analyzed for the concentrations of the six metals. The mean age of children was 51.9 months and about 90% were male. More than half (65%) of the children were born in Bucharest. Over 90% of concentrations of As and Cd were below limits of detection. Geometric mean concentrations of Pb, Mn, Al, and Hg were 1.14 μg/dL, 10.84 μg/L, 14.44 μg/L, and 0.35 μg/L, respectively. Multivariable linear regression analysis revealed that children who were female, had less educated parents, exhibited pica, and ate cold breakfast (e.g., cereal), watermelon, and lamb had significantly higher concentrations of Pb compared to their respective referent categories (all p < 0.05 except for eating lamb, which was marginally significant, p = 0.053). Although this is the first study that provides data on concentrations of the six metals for Romanian children with ASD, the findings from this study could be useful for designing future epidemiologic studies for investigating the role of these six metals in ASD in Romanian children.

Talk to us

Have any questions? We are always open to talk about our projects, creative opportunities and how we can help you.